Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.
نویسندگان
چکیده
It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation of skeletal myoblasts and was associated with activation of the AMP-activated protein kinase (AMPK). Activated AMPK was required to promote GR-induced transcription of the NAD+ biosynthetic enzyme Nampt. Indeed, GR augmented the Nampt activity, which consequently modified the intracellular [NAD+]:[NADH] ratio and nicotinamide levels, and mediated inhibition of skeletal myogenesis. Skeletal myoblasts derived from SIRT1+/- heterozygous mice were resistant to the effects of either GR or AMPK activation. These experiments reveal that AMPK, Nampt, and SIRT1 are the molecular components of a functional signaling pathway that allows skeletal muscle cells to sense and react to nutrient availability.
منابع مشابه
Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK
The specific Sirt1 activator SRT1720 increases mitochondrial function in skeletal muscle, presumably by activating Sirt1. However, Sirt1 gain of function does not increase mitochondrial function, which raises a question about the central role of Sirt1 in SRT1720 action. Moreover, it is believed that the metabolic effects of SRT1720 occur independently of AMP-activated protein kinase (AMPK), an ...
متن کاملInvolvement of the Clock Gene Rev-erb alpha in the Regulation of Glucagon Secretion in Pancreatic Alpha-Cells
Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion...
متن کاملNicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion
Nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD+) synthesis, and Sirt1, an NAD+-dependent histone deacetylase, protect the heart against ischemia/reperfusion (I/R). It remains unknown whether Nampt mediates the protective effect of ischemic preconditioning (IPC), whether nicotinamide mononucleotide (NMN, 500 mg/kg), a product o...
متن کاملCaMKK2 Suppresses Muscle Regeneration through the Inhibition of Myoblast Proliferation and Differentiation
Skeletal muscle has a major role in locomotion and muscle disorders are associated with poor regenerative efficiency. Therefore, a deeper understanding of muscle regeneration is needed to provide a new insight for new therapies. CaMKK2 plays a role in the calcium/calmodulin-dependent kinase cascade; however, its role in skeletal muscle remains unknown. Here, we found that CaMKK2 expression leve...
متن کاملNAMPT regulates mitochondria biogenesis via NAD metabolism and calcium binding proteins during skeletal muscle contraction
PURPOSE The purpose of this study was to investigate the effect that muscle contraction induced NAD metabolism via NAMPT has on mitochondrial biogenesis. METHODS Primary skeletal muscle cells were isolated from the gastrocnemius in C57BL/6 mice. The muscle cells were stimulated by electrical current at 1Hz for 3 minutes in conditions of normal or NAD metabolism related inhibitor treatment. NA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cell
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2008